Factor XIII-mediated cross-linking of NH₂-terminal peptide of α_2 -plasmin inhibitor to fibrin

Akitada Ichinose, Taro Tamaki and Nobuo Aoki*

Institute of Hematology and Department of Medicine, Jichi Medical School, Tochigi-Ken 329-04, Japan

Received 21 January 1983

The NH₂-terminal 12-residue peptide of α_2 -plasmin inhibitor, Asn-Gln-Glu-Gln-Val-Ser-Pro-Leu-Thr-Gly-Leu-Lys-NH₂ AcOH, was found to be a good substrate for plasma transglutaminase (activated blood coagulation factor XIII) and rapidly incorporated into fibrin by the enzyme. A high concentration of the peptide inhibited the enzyme-mediated cross-linking of α_2 -plasmin inhibitor to fibrin probably by competing with the inhibitor for the same site of fibrin α -chain.

α₂-Plasmin inhibitor Fibrin Cross-linking

Factor XIII Plasma transglutaminase Glutamine substrate

1. INTRODUCTION

We have shown that α_2 -plasmin inhibitor (α_2 PI) is cross-linked to fibrin by plasma transglutaminase, activated coagulation factor XIII (XIIIa), when blood coagulation takes place [1-4]. The cross-linking of α_2 PI renders fibrin clot more resistant to fibrinolytic process that occurs subsequently to fibrin formation and is caused by fibrinassociated plasminogen activation [5]. α_2 PI serves only as a glutamine substrate for XIIIa in the cross-linking reaction [4], and the cross-linking occurs between lysine residues of fibrin α -chains and a glutamine residue of α_2 PI molecule that is the second residue from the NH₂-terminal [4].

Here, the synthesized peptide which has the same amino acid sequence as that of the NH₂-terminal part of α_2 PI is shown to be crosslinked to fibrin by XIIIa and thereby competetively inhibits the cross-linking of α_2 PI to fibrin.

* To whom correspondence should be addressed

Abbreviations: α_2 PI, α_2 -plasmin inhibitor; XIIIa, activated coagulation factor XIII; N-peptide, NH₂-terminal peptide of α_2 PI

2. MATERIALS AND METHODS

2.1. Proteins

 α_2 PI, fibrinogen and blood coagulation factor XIII were purified from human plasma as in [6–8]. Contaminating plasminogen and fibronectin were removed from the fibrinogen preparation using lysine–Sepharose [9] and gelatin–Sepharose [10], respectively. The factor XIII present as a contaminant in the fibrinogen preparation (300 mg protein/100 ml) was 0.2 U/ml as assayed by antibody neutralization method [11] using the clotting factor XIII-test kit supplied by Behringwerke AG (Marburg). One unit of factor XIII is defined as the amount of factor XIII present in 1 ml normal pooled standard plasma. Purified thrombin was prepared from a bovine thrombin preparation (Mochida Pharmaceuticals, Tokyo) as in [12].

2.2. NH_2 -terminal peptide of α_2PI

The NH₂-terminal 12-residue peptide of α_2 PI (N-peptide), Asn-Gln-Glu-Gln-Val-Ser-Pro-Leu-Thr-Gly-Leu-Lys-NH₂·AcOH [13], was synthesized by Protein Research Foundation (Minoo, Osaka).

2.3. Radioiodination of proteins and peptide

Purified proteins (α_2 PI and fibrinogen) were radioiodinated by the solid-state lactoperoxidase method [14] using lactoperoxidase (Calbiochem-Behring-American Hoechst Corp., San Diego CA) and Na¹²⁵I (17 Ci/mg) (New England Nuclear, Boston MA). The labelled α_2 PI and fibrinogen preparations had spec. act. 5.2×10^5 cpm/ μ g and 1.2×10^5 cpm/ μ g, respectively. Npeptide was radioiodinated as in [15] using N-5-[125] Iliodophenyl) succinimidyl 3-(4-hydroxy, propionate (1.86 Ci/µmol) (Radiochemical Centre, Amersham). Free unconjugated radiolabelled compounds were removed by gel filtration using Sephadex G-10. The radioiodinated N-peptide had spec. act. 3.9×10^5 cpm/ μ g.

2.4. Measurement of the cross-linking to fibrin

Fibrinogen, N-peptide and/or $\alpha_2 PI$ were mixed, clotted and cross-linked at 37°C by thrombin, factor XIII, CaCl₂ in Tris-buffered saline (0.05 M Tris-HCl/0.15 M NaCl, pH 7.4). Radioactively labelled N-peptide, $\alpha_2 PI$ or fibrinogen was used for estimating the extent of cross-linking of each respective component. After allowing the cross-linking reaction to proceed for various lengths of time, the extent of cross-linking was examined as in [2,4].

3. RESULTS AND DISCUSSION

N-peptide was rapidly cross-linked to fibrin when the mixtures of N-peptide, factor XIII and fibrinogen were clotted with thrombin and calcium ions (fig. 1). This supports the finding that Gln-2 is the site where α_2 PI is cross-linked to fibrin [4]. With 1 unit of factor XIII/ml, the cross-linking of N-peptide was completed within 5 min. This reaction rate is similar to that of α_2 PI which is the most efficient substrate for XIIIa among known XIIIa substrate plasma proteins [16]. Although the reaction rate was dependent on the concentration of factor XIII, the maximum level of cross-linking achieved was independent of factor XIII and determined by the concentrations of fibrinogen and Npeptide (fig. 1,2). When N-peptide concentration was increased and became a large molar excess over fibrinogen, the increase of the cross-linking deviated from linearity and fell off to reach a plateau (fig. 3). At the maximum plateau level,

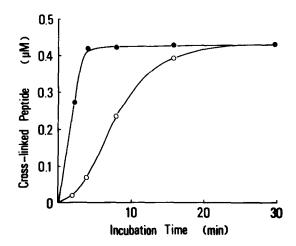


Fig. 1. Time-course of the cross-linking reaction of N-peptide to fibrin. Radioiodinated N-peptide $(1 \mu M)$, fibrinogen (300 mg/100 ml), factor XIII, and thrombin (0.33 U/ml) were mixed and incubated at 37°C. Factor XIII was 0.2 U/ml (\odot) and 1 U/ml (\bullet). The amount of N-peptide cross-linked to the formed fibrin after various times of incubation was determined.

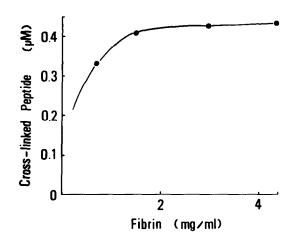


Fig. 2. The relationship between the concentrations of fibrin and the amounts of cross-linked N-peptide. The experimental conditions were the same as those in fig. 1, except for variation of fibrinogen concentration and a fixed length of incubation time (30 min). Factor XIII was 1 U/ml.

~17 molecules of N-peptide were bound to each α -chain of fibrin. These modes of reaction are the same as those observed in the α_2 PI-fibrin(ogen) cross-linking reaction [2,3] and may be similarly explained by an equilibrium of the reaction [3].

The cross-linking of α_2 PI to fibrin was decreased

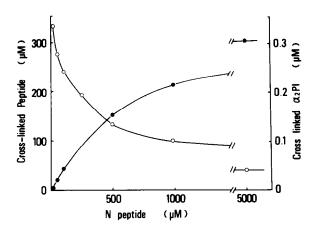


Fig. 3. Increase of cross-linked N-peptide and decrease of cross-linked $\alpha_2 PI$ with increasing concentrations of N-peptide. Fibrinogen (300 mg/100 ml), $\alpha_2 PI$ (1 μ M), various concentrations of N-peptide, CaCl₂ (5 mM) and thrombin (0.33 U/ml) were mixed and incubated at 37°C. The amounts of the peptide (\bullet --- \bullet) or $\alpha_2 PI$ (\odot) cross-linked to the formed fibrin after 30 min incubation were determined using radiolabelled N-peptide or $\alpha_2 PI$, respectively.

by the presence of N-peptide. The decrease was in inverse relationship to the increase of cross-linking of N-peptide (fig.3). However, a very high concentration of the peptide was required to inhibit α_2 PI cross-linking. The 50% reduction of α_2 PI crosslinking in the presence of 1 μ M α_2 PI was achieved by an addition of \sim 350 μ M of N-peptide (fig.3). At this level (50%) of inhibition of α_2 PI cross-linking, the molar ratio of cross-linked N-peptide to crosslinked α_2 PI was estimated to be about 1000:1. These findings suggest that α_2 PI is cross-linked very efficiently to a specific site of fibrin α -chain, and N-peptide can not compete efficiently for this site with α_2 PI. Probably some structure of α_2 PI molecule other than the NH2-terminal region is required for the efficient interaction of XIIIa with α_2 PI of factor XIII- α_2 PI intermediate complex [3] with its complementary site (lysine residue) of fibrin. A contribution to specificity of amino acid residues located some distance from the substrate glutamine was indicated in the study of synthetic glutamine substrates for XIIIa [17].

Cross-linked polymerization of fibrin α -chains was also decreased when the concentration of N-peptide was >1 mM. Cross-linked dimerization of γ -chains was not affected by N-peptide.

REFERENCES

- [1] Sakata, Y.and Aoki, N. (1980) J. Clin. Invest. 65, 290-297.
- [2] Tamaki, T. and Aoki, N. (1981) Biochim. Biophys. Acta 661, 280-286.
- [3] Ichinose, A. and Aoki, N. (1982) Biochim. Biophys. Acta 706, 158-164.
- [4] Tamaki, T. and Aoki, N. (1982) J. Biol. Chem. 257, 14767-14772.
- [5] Sakata, Y. and Aoki, N. (1982) J. Clin. Invest. 69, 536-542.
- [6] Moroi, M. and Aoki, N. (1976) J. Biol. Chem. 251, 5956-5965.
- [7] Blombäck, B. and Blombäck, M. (1956) Ark. Kemi. 10, 415-443.
- [8] Curtis, C.G. and Lorand, L. (1976) Methods Enzymol. 45, 177-191.
- [9] Matsuda, M., Iwanaga, S. and Nakamura, S. (1972) Thromb. Res. 1, 619-630.
- [10] Vuento, M. and Vaheri, A. (1978) Biochem. J. 175, 333-336.
- [11] Bohn, H. and Haupt, J. (1968) Thromb. Diath. Haemorrh. 19, 309-315.
- [12] Lundblad, R.L. (1971) Biochemistry 10, 2501-2505.
- [13] Lijnen, H.R., Wiman, B., Van Hoef, B. and Collen, D. (1981) Thrombos. Haemostas. 46, 282.
- [14] David, G.S. (1972) Biochem. Biophys. Res. Commun. 48, 464-471.
- [15] Bolton, A.E. and Hunter, W.M. (1973) Biochem. J. 133, 529-539.
- [16] Garmassi, F. and Chung, S.I. (1982) Haemostasis 11 suppl. 1, 2.
- [17] Gorman, J.J. and Folk, J.E. (1980) J. Biol. Chem. 255, 419-427.